Structure Reports

Online
ISSN 1600-5368

Nazan Ocak Ískeleli, ${ }^{a}$ Șamil Ișık, ${ }^{\text {a }}$ Zuhal Özdemir ${ }^{\text {b }}$ and Altan Bilgin ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayís University, TR-55139, Kurupelit-Samsun, Turkey, and ${ }^{\mathbf{b}}$ Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, TR-06100, Sıhhiye, Ankara, Turkey

Correspondence e-mail: nocak@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.038$
$w R$ factor $=0.095$
Data-to-parameter ratio $=12.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(E)-1,3-Di(2-furyl)-2-propen-1-one

The structure of the title compound, $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{3}$, contains two crystallographically independent molecules in the asymmetric unit, both of them located in general positions. Both molecules are non-planar; the dihedral angles between the furyl rings are 10.43 (6) and $11.59(7)^{\circ}$. The crystal structure is stabilized by weak intra- and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

The title compound, (I), $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{3}$, is a derivative of chalcone, which is 1,3-diphenyl-2-propen-1-one. Depending on the substitution pattern of the two aromatic rings, a wide range of pharmacological activities have been identified for various chalcones. Chalcones show an impressive array of pharmacological activities, such as antiprotozoal (Nielsen et al., 1998; Li et al., 1995; Liu et al., 2001), anti-inflammatory (Hsieh et al., 1998), nitric oxide inhibition (Rojas et al., 2002) or anticancer properties.

(I)

The crystal structure contains two crystallographically independent molecules in the asymmetric unit, both of them located in general positions. The furyl rings in both molecules are twisted, and the dihedral angles between the furyl rings are 10.43 (6) and 11.59 (7) ${ }^{\circ}$ (Fig. 1). The geometric parameters of the furyl rings are in the normal ranges and are comparable to those observed in the related compound 2-cyano- N -furfuryl-3-(2-furyl)acrylamide (Pomés Hernandez et al., 1996).

Figure 1
The asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level and the atom-numbering scheme.

Received 31 March 2005
Accepted 11 April 2005
Online 16 April 2005

In the crystal structure of (I), molecules are connected via weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions into chains that extend in the direction of the b axis (Fig. 2 and Table 2). There are additional short contacts between the H atoms and the centroids of the furyl rings $(\mathrm{C} 11 a-\mathrm{H} 11 a \cdots C g 4$ and $\mathrm{C} 11 b-\mathrm{H} 11 b \cdots C g 3$; $C g 4$ is the centroid of ring $\mathrm{O} 3 b-\mathrm{C} 11 b$ and $C g 3$ is the centroid of ring $\mathrm{O} 3 a-\mathrm{C} 11 a$), indicating weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 2).

Experimental

2-Acetylfuran (0.01 mol) and 2-furaldehyde (0.01 mol) were dissolved in ethanol (25 ml) and the solution was stirred in an icebath. Sodium hydroxide $(0.5 \mathrm{~g}, 0.0125 \mathrm{~mol})$ dissolved in water $(2.5 \mathrm{ml})$ was added dropwise to the cooled solution, keeping the temperature below 303 K during this mixing process. The solution was stirred for 3 h at $288-303 \mathrm{~K}$. The resulting precipitate was filtered off, and washed with water and ethanol. After drying, (I) was recrystallized from methanol.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{3}$

$M_{r}=188.17$
Monoclinic, $P 2_{1} / c$
$a=15.1420$ (10) £
$b=11.6395$ (8) \AA
$c=11.2429$ (14) A
$\beta=111.363$ (7) ${ }^{\circ}$
$V=1845.4(3) \AA^{3}$
$Z=8$

$$
D_{x}=1.355 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 34010 reflections
$\theta=1.4-27.3^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, yellow
$0.56 \times 0.46 \times 0.32 \mathrm{~mm}$

Data collection

Stoe IPDS-II diffractometer ω scans
Absorption correction: none 35020 measured reflections
3920 independent reflections

$$
\begin{aligned}
& R_{\text {int }}=0.048 \\
& \theta_{\max }=26.8^{\circ} \\
& h=-19 \rightarrow 19 \\
& k=-14 \rightarrow 14 \\
& l=-14 \rightarrow 14
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.095$
$S=1.03$
3920 reflections
317 parameters
All H -atom parameters refined

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0433 P)^{2} \\
&+0.2469 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.14 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.13 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{C} 1 a-\mathrm{C} 2 a$	$1.329(3)$	$\mathrm{C} 5 b-\mathrm{O} 2 b$	$1.2216(15)$
$\mathrm{C} 1 a-\mathrm{O} 1 a$	$1.356(2)$	$\mathrm{C} 8 a-\mathrm{C} 9 a$	$1.3458(19)$
$\mathrm{C} 1 b-\mathrm{C} 2 b$	$1.321(2)$	$\mathrm{C} 8 a-\mathrm{O} 3 a$	$1.3766(15)$
$\mathrm{C} 1 b-\mathrm{O} 1 b$	$1.3575(18)$	$\mathrm{C} 8 b-\mathrm{C} 9 b$	$1.3523(18)$
$\mathrm{C} 2 a-\mathrm{C} 3 a$	$1.409(2)$	$\mathrm{C} 8 b-\mathrm{O} 3 b$	$1.3721(14)$
$\mathrm{C} 2 b-\mathrm{C} 3 b$	$1.413(2)$	$\mathrm{C} 9 a-\mathrm{C} 10 a$	$1.413(2)$
$\mathrm{C} 3 a-\mathrm{C} 4 a$	$1.348(2)$	$\mathrm{C} 9 b-\mathrm{C} 10 b$	$1.4099(19)$
$\mathrm{C} 3 b-\mathrm{C} 4 b$	$1.3456(18)$	$\mathrm{C} 10 a-\mathrm{C} 11 a$	$1.327(2)$
$\mathrm{C} 4 a-\mathrm{O} 1 a$	$1.3641(16)$	$\mathrm{C} 10 b-\mathrm{C} 11 b$	$1.329(2)$
$\mathrm{C} 4 b-\mathrm{O} 1 b$	$1.3642(15)$	$\mathrm{C} 11 a-\mathrm{O} 3 a$	$1.3651(16)$
$\mathrm{C} 5 a-\mathrm{O} 2 a$	$1.2261(16)$	$\mathrm{C} 11 b-\mathrm{O} 3 b$	$1.3640(16)$
$\mathrm{C} 4 a-\mathrm{C} 5 a-\mathrm{C} 6 a$	$116.46(12)$	$\mathrm{C} 6 a-\mathrm{C} 7 a-\mathrm{C} 8 a$	$127.21(12)$
$\mathrm{C} 4 b-\mathrm{C} 5 b-\mathrm{C} 6 b$	$116.82(11)$	$\mathrm{C} 6 b-\mathrm{C} 7 b-\mathrm{C} 8 b$	$127.90(12)$

The crystal structure of (I), showing the linkage of molecules via C $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding (hydrogen bonds are shown as dashed lines).

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 b-\mathrm{H} 1 b \cdots \mathrm{O} 3 b^{\mathrm{i}}$	0.96 (2)	2.56 (2)	3.4812 (19)	162 (2)
$\mathrm{C} 9 a-\mathrm{H} 9 a \cdots \mathrm{O} 2 a^{\text {ii }}$	0.97 (2)	2.47 (2)	3.4402 (18)	174 (1)
$\mathrm{C} 9 b-\mathrm{H} 9 b \cdots \mathrm{O} 2 b^{\text {iii }}$	0.96 (2)	2.51 (2)	3.4596 (17)	174 (1)
$\mathrm{C} 10 b-\mathrm{H} 10 b \cdots \mathrm{O} 2 b^{\text {iv }}$	0.97 (2)	2.53 (2)	3.4786 (17)	168 (1)
$\mathrm{C} 11 a-\mathrm{H} 11 \mathrm{a} \cdots \mathrm{Cg} 4^{\mathrm{v}}$	0.94 (2)	2.84 (2)	3.5765 (19)	137 (1)
$\mathrm{C} 11 \mathrm{~b}-\mathrm{H} 11 b \cdots \mathrm{Cg}^{\text {vi }}$	0.95 (2)	2.84 (2)	3.6160 (17)	140 (1)

Symmetry codes: (i) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $-x+1, y+\frac{1}{2},-z+\frac{3}{2}$; (iii) $-x, y+\frac{1}{2},-z+\frac{1}{2}$; (iv) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (v) $x, y-1, z$; (vi) $x,-y-\frac{1}{2}, z-\frac{1}{2}$. $C g 4$ and $C g 3$ are the centroids of rings $\mathrm{O} 3 b-\mathrm{C} 11 b$ and $\mathrm{O} 3 a-\mathrm{C} 11 a$, respectively.

All H atoms were found in a difference electron-density map and were refined with isotropic displacement parameters. $\mathrm{C}-\mathrm{H}$ distances are in the range 0.896 (16)- 0.99 (2) \AA.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hsieh, H. K., Lee, T. H., Wang, J. P., Wang, J. J. \& Lin, C. N. (1998). Pharm. Res. 15, 39-46.
Li, R., Kenyon, G. L., Cohen, F. E., Chen, X., Gong, B., Dominguez, J. N., Davidson, E., Kurzban, G., Miller, R. E., Nuzum, E. O., Rosenthal, P. J. \& McKerrow, J. H. (1995). J. Med. Chem. 38, 5031-5037.

organic papers

Liu, M., Wilairat, P. \& Go, M. L. (2001). J. Med. Chem. 44, 4443-4452.
Nielsen, S. F., Christensen, S. B., Cruciani, G., Kharazmi, A. \& Liljefors, T. (1998). J. Med. Chem. 41, 4819-4832.

Pomés Hernandez, R., Duque Rodriguez, J., de Armas, H. N. \& Toscano, R. A. (1996). Acta Cryst. C52, 203-205.

Rojas, J., Paya, M., Dominguez, J. N. \& Ferrandiz, M. L. (2002). Bioorg. Med. Chem. Lett. 12, 1951-1954.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

